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A kinetic-type theoretical approach is developed for the transport processes involved in flows of dense
mixtures of solid particles with distribution in particle size. The particles are treated as being smooth,
nearly elastic, and spherical. Starting from the reduced Liouville equation, a generalized Boltzmann
equation that includes the effects of inelastic collisions is stated, assuming the condition of particle
chaos. The nonequilibrium velocity distribution function is derived for particles of each size using a gen-
eralized Grad moment method. The theory is applied to study the rheology of multicomponent mixtures
of granular materials undergoing steady shearing flows.

PACS number(s): 05.20.Dd

I. INTRODUCTION

During the past decade, the problems of granular ma-
terial flows have received increasing attention due to
their importance in various engineering and geological
systems, including grain traveling down an inclined chute
[1], mixing of grains inside a mixer [2], rockfalls [3], sedi-
ment transport [4], and pack-ice flows [5]. By definition,
gas-solid flows are considered “granular flows” if solid-
body collisions govern the bulk behavior. Experiments
by Bagnold [6], Savage and McKeown [7], and Savage
and Sayed [8] on shear flows of concentrated suspensions
of spherical particles have revealed that, at high shear
rate (high Bagnold number), collisional interactions be-
tween the particles and between the particles and solid
surfaces play an important role in momentum and energy
transport and the interstitial fluid plays a negligible role
in the flow mechanics. In recent years, attention has been
directed toward developing theories [9-11] employing
the kinetic theory of dense gases to obtain continuum
equations for the mass, momentum, and energy of granu-
lar material flows in the grain-inertia regime, where the
grains move more or less randomly as a result of col-
lisions, much like the gas molecules in a dense gas. How-
ever, there are differences between kinetic theories for
dense gases and granular materials. Unlike the kinetic
energy of gas molecules, the kinetic energy of the parti-
cles is not necessarily conserved in collisions due to the
inelasticity of the grains. Therefore, the kinetic theory
formulations obtained assuming the reversibility of col-
lisions must be modified to account for the energy dissi-
pated in solid-body collisions [11,12].

Using methods from the standard Enskog theory of
dense hard-sphere systems, one requires knowledge of the
local equilibrium value of the radial distribution function
evaluated at the point of contact between two colliding
spheres to account for the increased molecular collision
frequency due to the reduction of the volume in which
any one of the molecules can be located [13]. In contrast
to a normal gas in its equilibrium state, where there is a
random thermal velocity of the molecules characterized
by the gas temperature, the natural equilibrium state of a
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granular material is a static configuration due to the in-
elastic nature of particle collisions. The granular temper-
ature, which is proportional to the mean square of the
random component of solid particle velocity, can arise
only from gradients in the mean flow in a flowing granu-
lar material that is subjected to external sources of energy
such as shear forces. Hence, in a granular material, a
condition of thermal equilibrium may be maintained by
continuous shearing, in which the energy supplied to the
particles is balanced by energy dissipation due to inelastic
collisions. In this case, it is possible for the distribution
of particles to be isotropic, but it is reasonable to expect
an anisotropic distribution of collisions. In order to de-
scribe the transport properties of rapid granular flows us-
ing the Enskog theory of dense gases, Savage [14] as-
sumed an isotropic distribution of collision angles be-
tween the colliding grains, which were taken to be
smooth, slightly inelastic, spherical particles of uniform
size. He suggested that the expression for the radial dis-
tribution function at contact proposed by Ogawa,
Umemura, and Oshima [15] may be appropriate for a
small finite system of monodisperse granular materials
undergoing a shear flow. This expression predicts a dras-
tic increase in the value of the radial distribution function
as the volume fraction approaches the maximum concen-
tration at the random closest packing. It is worth noting,
however, that Ma and Ahmadi [16] indicated that the ra-
dial distribution function at contact for a system of iden-
tical spheres must diverge with a fractional critical ex-
ponent. They proposed an empirical hard-sphere equa-
tion of state by making use of a fractional power in their
fitting of numerical simulations, from which one can ob-
tain the radial distribution function at contact for a sys-
tem of identical spheres, which appears to cover the en-
tire range of concentrations as long as the transition to
ordered state does not occur. Although the smooth,
slightly inelastic, spherical particle model for a grain may
not be entirely appropriate and though assumptions such
as particle chaos and isotropic distribution of collisions
throughout the flow are also simplified representations of
the actual flow physics, the generalized Enskog transport
theories of granular fluids as developed by Lun et al. [11]

4877 ©1995 The American Physical Society



4878

have significantly advanced the rheological description of
rapid granular flows [17].

Most previous theoretical studies have been limited to
the case of monodisperse dense gas-solid suspensions. In
reality, the solid phase normally consists of a mixture of
different size particles where the particle size distribution
can play a significant role in the flow mechanics. With
the assumption that the singlet velocity distribution func-
tion is a dense Maxwellian, Farrell, Lun, and Savage [18]
have calculated the stresses and rate of energy dissipation
in a binary mixture of smooth, inelastic, spherical parti-
cles undergoing simple shear flow. They proposed an ex-
pression for the radial distribution function at contact for
a binary mixture of spherical particles for the case of
shearing motion in a finite-size system. In their modified
form of the standard Enskog theory, the contact value of
the radial distribution function was evaluated as a func-
tion of the local densities of the components at the mid-
point of the line joining the centers of a colliding pair.
Using an estimated value for the maximum solids frac-
tion at closest random packing for a binary mixture, Jen-
kins and Mancini [19] showed that predictions of the
theoretical model of [18] were in poor agreement with the
computer simulations obtained by Ladd and Walton [20].
However, this disagreement can be lessened if one uses a
more precise value for the maximum solids fraction at
closest random packing [21]. Jenkins and Mancini [19]
modified the revised Enskog theory for dense multicom-
ponent fluid mixtures of de Haro, Cohen, and Kincaid
[22] and developed a kinetic theory to predict the trans-
port properties of binary mixtures of smooth, slightly in-
elastic spheres. In the revised Enskog theory the radial
distribution function at contact, which is evaluated as
nonlocal functionals of the mixture density fields, takes
into account the spatial correlations between two spheres
in a nonuniform local equilibrium state. This theory
leads to diffusion forces and Onsager relations that are
consistent with the laws of irreversible thermodynamics
[23], while the standard Enskog theory does not [24].
Jenkins and Mancini [19] predicted the results of the nu-
merical simulation of [20] very well using the Carnahan-
Starling approximation [25] for the radial distribution
function at contact, which assumes an isotropic distribu-
tion of collision angles between the colliding particles.
However, in their model Eqgs. (30) and (31) seem to be in-
correct (see [26]). In the light of the above, more
rigorous theoretical studies are clearly required of the
transport properties of a multicomponent mixture con-
sisting of an arbitrary number of smooth, slightly inelas-
tic spheres and its polydisperse limit based on the Enskog
theory. Xu and Stell [27] discussed the importance of
studying polydisperse hard-sphere systems, showed the
usefulness of such a theory in modeling the softness and
orientational dependence of pair potentials in a mono-
disperse system, and calculated viscosities of a po-
lydisperse elastic hard-sphere fluid.

In the present effort, a mathematical model for the flow
of a dense mixture with distribution in size of smooth,
nearly elastic spherical particles is developed. Starting
from the reduced Liouville equation, a generalized
Boltzmann equation that includes the effects of inelastic
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collisions is stated, assuming the condition of particle
chaos. By using an averaging method, the continuum
equations of the solid mixture in terms of the mass
weighted mean values are derived, which permit quanti-
tatively reliable simulation of the multicomponent flow of
particles of different mass. The nonequilibrium velocity
distribution functions are calculated using a generalized
Grad moment methods [28]. It is assumed that the mul-
ticomponent dense gas-solid flow can be adequately de-
scribed by consideration of the 13-moment approxima-
tion. The method presented in this study differs from
that of Grad in that the diffusion velocities, the pressure
deviators, and the transport pseudothermal energy flux
vectors are determined by solving the approximate form
of the balance laws of linear momentum, the deviant part
of the mean of the second moment of velocity fluctuation,
and the contracted version of the mean of third moment
of velocity fluctuation, respectively. This theory is ap-
plied to study the rheology of multicomponent mixtures
of granular materials undergoing steady shearing flow.
The results for the shear stress of binary mixtures under-
going shear flow between parallel boundaries are found to
show good agreement with computer simulations of Ladd
and Walton [20]. Then, the necessary basis for predicting
the separation of two different size particles by shear is
discussed. Furthermore, as another example of applica-
tions of the theory, the special case of isothermal
diffusion in a monosized binary mixture of differently
colored particles is investigated and an analytical relation
for the particle diffusivity is presented.

II. MATHEMATICAL MODEL

In this section, the flow mechanics of a dense gas-solid
stream consisting of hard, smooth, nearly elastic spheri-
cal particles is considered. The solid phase includes par-
ticles of different sizes, which are assumed to behave ma-
croscopically like interpenetrating fluids dynamically
coupled through the particle-to-particle collisions. The
interaction between the particles in the stream is assumed
to be number-conserving contact collisions. In addition,
the gaseous phase is assumed to play a negligible role in
the flow mechanics. The idea is that the solid com-
ponents are treated as a granular material in which
momentum is primarily transferred through particle-
particle collisions.

A mixture of s different-size solid particles made up of
N particles, which are assumed to be hard, smooth, but
nearly elastic, in a volume ¥V may be represented by an
ensemble described by the particle velocity distribution
functions f(N)(xjN,c}V,t) in y space. Here fV) is the
Nth-order distribution function. For each component of
the mixture there is a distribution function that defines
the expected number density of particles of kind =
(n=1,...,s) having m” mass in a fixed volume element
dx} centered at a point x; with velocities in the range c;
and cjl—i-dcjl, where dcj1 is a velocity element, at time t.
The kinetic equation describing how this distribution
function varies with time may be given as [29]
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where dp; is a momentum element, F' is the force per
unit mass on the nth size particle due to an external field,
and X JN’" is the force on the nth size particle due to all
other particles. The subscript j is a free index; for it the
SO- called summation convention is applied. However,
dp ~! having a roman subscript is represented as

]N 'dpY ~'dpY¥ !, hence the summation convention
should be suspended over roman subscripts.

For a mixture having only two-body forces between the
particles, Eq. (1) reduces to the Bogoliubov-Born-Green-
Kirkwood-Yvon equation
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(n,p=1,...,s) defines the number density of pairs of
particles such that a particle of kind n is located in the
volume element dx placed at x; ! with its velocity in the
range dc! i) and ¢! j wh1le a part1cle of kind p is located in
dxj at xj with its velocity in the range cj and cf-l—dcj.
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derivative, {n} is sohd component densmes( Cl=c} J —u;
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is the substantial time
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Since the f ntD equation involves a higher-order distribu-
tion)function it does not in itself define the behavior of
f* . Therefore, the higher-order distribution function
must be defined in terms of distribution functions of
lower order. In order to obtaln an expressmn for the pair
distribution function f ™ in terms of f" and f P! , one
may apply the particle chaos approx1mat10n which
means there are no correlations between the velocities of
any two particles at t =0 and that for the time interval
between 0 and ¢, where ¢ >>¢_,;, recollisions of any pair
of interacting particles can be neglected. Here ¢, is the
duration of a collision. On the other hand, to incorporate
the effect of the reduction of available volume in a dense
mixture due to the finite size of the particles, the frequen-
cy of collisions should be increased by a factor g"
(n,p =1, ...,s), which is the radial distribution function
at contact for two particles, one of component n and the
other of component p. In this case, the mixture radial
distribution functions at contact must be taken as nonlo-
cal functionals of the density fields of the various com-
ponents in the mixture [23]. Following Andrews [30], for
a nonequilibrium dense mixture of solid particles in a
state of small gradient of inhomogeneity over distances of
several times the separation between neighboring parti-
cles, assuming that the distribution functions do not
change appreciably during the time of a collision and
only binary encounters of particles possessing no internal
degrees of freedom are considered, then Eq. (2) reduces to
the generalized Boltzmann equation
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the single-particle velocity dlstrlbutlon functlon of k1nd
n, u; is the mass-average velocity of the solid mixture,
cj/P=cj'—cf is the relative velocity of the particles, H is
the Heaviside step function, and k; is the unit vector
directed from the center of the first particle having m"
mass at x; to the center of the second particle of kind p at

x; +0"ij at the instant of the collision, when the dis-

tance of their centers is 0"”=(0"+0”)/2. Note that F} ’

is a function of x; and ¢ but not of velocity.
¢/ and c¢f denote the velocities of the m" and m? par-

ticles after collision, respectively, which are related to
those before collision ¢/ and ¢f according to

mP+m

where e is the coefficient of restitution for a collision
between two particles, one of component #n and the other
of component p, which is assumed to be a material con-
stant independent of the particle impact velocity. Al-
though the coefficient of restitution may be a function of
impact velocity, a reasonable agreement can be obtained
between theoretical predictions assuming a constant,
velocity-independent coefficient of restitution and experi-
mental results [31}

In Eq. 3) f nis given as a function of C/' rather than
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¢j' [13] and as such the meanings of d/9¢ and 3/0x; are

changed, since C} is now regarded as independent of x;.
The term on the left-hand side of Eq. (3) represents tl}le
time derivative of the velocity distribution function f”"

following the mean motion of the solid mixture. The first
term on the right-hand side is called drift term, which
represents the rate of change in f” ° due to motion of
particles without collisions. The last term .on the right-
hand side takes into account the particle-to-particle col-
lisions. Equation (3) for particles of the same size and
density of kind n is coupled with those of the neighboring
solid particles having different sizes and densities through
the solid-body collision terms. The collisional operator,

_d_ n gngn n n_aﬁ_"
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which lacks the symmetry, depends on the coefficients of
restitution [32]; however, the standard techniques of the
kinetic theory that employ symmetries in conservative
collisions are used to derive Eq. (3). Due to this assump-
tion the theory may be applied only to nearly elastic par-
ticles. Equation (3) forms the basis for the discussion of
the transport properties of multicomponent dense mix-
tures of slightly inelastic spherical particles.

Multiplying Eq. (3) by m"¢", where " is any property
of particles of kind n, integrating it over the instantane-
ous velocity ¢/ gives the Maxwell’s equation of change
for the particles of the nth component in terms of the
mass-weighted mean values
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Here p;, and ¢" are the material density and volume fraction of the particles of kind n, respectively, and g/” is the con-
tact value of the equilibrium radial distribution function evaluated at the density n. The expression for the radial distri-
bution function in the revised Enskog theory has been presented by van Beijeren and Ernst [33]. The mass weighted
mean value of a property of m " particles is defined by

_ fm"f”mtp"dcj"
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fmf dc;

Following Jenkins and Richman [12], the particle-particle collisional flux ©7” and the source-like ¥"”, appearing in Eq.
(5), can be written as
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Jenkins and Mancini [19,34] reported a different expres-
sion for the particle-particle collisional flux. Therefore, a
different expression for the flux of the pressure tensor
than that given in the subsequent analysis can be derived
from their Eq. (31). Since the pressure deviators are sym-
metric tensors, it can be seen from Eq. (11) in the present
study that the flux of the pressure tensor may be assumed
to be symmetric only with respect to the first two indices.
Flux of the pressure tensor is important if one uses the
13-field theory to derive an expression for the phase
speed. It is shown that for high frequencies the 13-field
theory provides a finite phase speed while that provided
by the five-field theory becomes infinite as the coefficient
of restitution approaches unity [35]. The latter is known
as the paradox of heat conduction.

The hydrodynamic equations of change—the balance
equations of mass, momentum, kinetic energy, the mean
of the second moment of velocity fluctuation, and the
mean of the third moment (contracted version) of veloci-
ty fluctuation, which characterize the 13-moment theory
of Grad [28]2—may be derived bg taking 9", in Eq. (5), to
be 1, Cj", cm, C].”C‘;’, and Cj"C "", respectively. The bal-
ance of mass is given as follows:

ou;
dp” | 2% | 8 azmny_
i +p ax-+3xj (p"C/)=0, (8)

J

where p"=p? ¢" is the apparent density of particles of the
nth component; the balance of linear momentum is given
by

dcn n n
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where P[=p"C{'C/+3;_,0/7(C}") is the macroscopic
pressure tensor of particles of kind n; the balance of
kinetic energy (pseudothermal energy) can be written as

3 2dT" n 9  n
= — C
2 |" Tar T (n )
= pn O L +p"FC]—p"C] 2 1o
ax; ax, P Par
where T"=1m"C "* is the granular temperature of parti-

cles of kind n which varies from the mixture temperature
T by 6", qinz%[p”C"ZCi”-sz,=19,f'1’(C"2)] is the energy
flux vector of R the nth component and
y"=—33,=1X"(C"") is the rate of energy dissipation
per unit volume of the mixture due to inelastic nature of
the collisions. It is shown in the subsequent analysis that
y" is proportional to (1—e™). Here the attention is re-
stricted to such situations that the differences between
component granular temperatures and the mixture tem-
perature are small.
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The balance of the mean of the second moment of ve-
locity fluctuation is given as follows:

PH%(C,'IC;)_ ncn__(pncln)
aqiql " du; ou,
— P 'l ny_— _
ax S xcren) P,qa Pl
p=1
+p"FFCE+p"FACT — p" ke TR pn 21
p 1 q p q 1 dt dt

an

where q;, —[p"C C'Cy+ 35 =10/P(C"Cy)] is the flux of
the pressure tensor. The balance law for the pressure de-
viators a{;;) can be derived using the kinetic energy equa-
tion (10) to eliminate dT"/dt from Eq. (11). The balance
of the mean of the third moment of velocity fluctuation
(contracted version) is given by

_(Cncn y— ncn I(pnc_ln)
_E:)ij?_F él X"p(C"C"C")—q,qq gui
L a L+ p"FIC™ +2p"F}CJC]
—p d:t P —2p" d:t" crer, (12)
where g;;=[p" ,"C,-"C"2+2;=19;"’( Ci”C”z)] is the flux of

the energy flux.

For dense mixtures of solid particles the transport
mechanism for diffusion is kinetic. However, energy and
momentum flows are outcomes of two distinct causes:
translational motion of particles and the solid-body in-
teractions. The first terms on the right-hand side of the
expressions given above for the pressure tensor, energy
flux vector, flux of pressure tensor, and flux of the energy
flux represent kinetic fluxes, which arise from the transla-
tional motion of particles of the nth component, and the
second terms are the potential fluxes, which arise from
particle-particle collisions.

III. CONSTITUTIVE EQUATIONS

In order to evaluate the constitutive quantities such as
pressure tensor Py, energy flux gjg,, rate of energy dissi-
pation per unit volume of the mixture y”", flux of the pres-
sure tensor g, flux of the energy flux q,J, and sourcelike
terms Y"P(C;), x"(C;,), and x"(Cj,,), it is necessary to
determine the nonequilibrium distribution function f”
for particles of kind n (n =1, ...,s). If the state of the
solid mixture is near equilibrium, the lin)earized form of
the one-particle distribution function f”  about the local
Maxwellian distribution corresponding to local macro-
scopic properties of particles of kind » may be developed
following the moment method of Grad [28]
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where T=3;_n"T"/3; - n" is the granular tempera-
ture of the multicomponent mixture, v=C/ are the
diffusion  velocities, az‘,-j) =C,."CJ»"_—_(_T/ m”)S,-j are
the pressure deviators, and a,-',’nm=C,-"C”2—5(T/m")v,-"
are the transport pseudothermal energy flux vectors. As-
suming equal granular temperatures for all components
represents the simplest case, and it would seem necessary
to understand this case first before attempting more com-
plex energy transfer problems involving mixtures of
granular materials in which the component temperatures
are different from the mixture temperature [35]. Hence,
in this study the effects of the particle granular tempera-
ture perturbations 6" are not considered.

The constitutive quantities mentioned above can be
calculated in terms of 13-field quantities p”, v/, T, a{ i)
and aj},, by substituting the one-particle distribution
function (13) into expressions for pressure tensor, energy
flux, rate of energy dissipation per unit volume of the
mixture, flux of the pressure tensor, flux of the energy
flux given in Sec. II as well as appropriately truncated ex-
pressions for collisional source and flux. The series for
collisional source and flux (7) are truncated such that
they are valid when the spatial gradients of the field
quantities are small. Neglecting products of diffusion ve-
locities, pressure deviators, and energy flux vectors with
those terms involving the spatial gradient, integrations
for the collisional source and flux terms appearing in ex-
pressions for pressure tensor, energy flux, rate of energy
dissipation per unit volume of mixture, flux of the pres-
J
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sure tensor, and flux of the energy flux can be carried out.
To shorten the calculations, the collision operators were
obtained using only the terms of the two lowest orders in
Eq. (7). The results of integrations are given in the Ap-
pendix.

By substituting the calculated values of the quantities
Pl Qg v Qiigs X™P(C;Cp), X™(C;), and x"(C,C,C,)
into balance equations (8)—-(12), a system of field equa-
tions for scalar fields of p”, v/, T, a{;;), and ajp,,, can be
obtained. Here the work is directed toward finding ap-
proximate expressions for a{;;), aj,, and v as functions
of gross condition of the mixture of particles using scal-
ing argument. To this end a term-by-term order of mag-
nitude analysis of the conservation equation was carried
out to find the dominant terms. Taking L, t,, and T}/%,
respectively, as a characteristic length, time, and particle
fluctuating velocity, five dimensionless quantities
ri=o"/L, ri=0"/t,T{? ri=vl/Ty"? ri=al /Ty,
and r5=a;,/ T3/? that are useful for the scaling can be
defined.

When the spatial gradients of the mean fields are small,
in the balance law for the deviant part of the mean of the
second moment of velocity fluctuation, all quantities 7/
(n=1,2,...,s;i=1,2,...,5) are supposed of the same
order of magnitude and small, then, in this approxima-
tion pressure deviators may be taken to be independent of
diffusion velocities and transport pseudothermal energy
flux vectors satisfying

XCEM P+ M2+ (1—e")Jaly) + {32 +(1—e™) ]~ 41 MPak,,) )

s ou;
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o

where du;/dx, is nondivergent symmetric part of the
velocity-gradient tensor. It is worth noting that Eq. (14)
reduces for a monodisperse solid phase to the expression
obtained by Lun et al. [11] for the deviant part of the
transport pressure tensor. This agreement is a valuable
check for the present calculations.

Because of the coupling between the conservation of
linear momentum (9) and the balance of the mean of the
third moment of velocity fluctuation (12) through the
sourcelike terms, the evaluation of the diffusion velocities
and pseudothermal energy flux vectors is more involved.

(14)

[
By retaining only the dominant terms in Eq. (9) one can
get
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where n is the solid mixture number density and d/* is the standard diffusion force defined by
s n n P
d{ﬂ:i 1+ 2 M"P(1+e"1’)npa”1 gnp M_/m_ 2 op” on?
n 0x; p=1 on? TonhstnP ox;
— P,
— L L — FP)— B_ m" 0 9
) T o, (16)
Here P, =37 _Pf, is the total solid pressure, p=37_,p" is the mixture density, and u" is the chemical potential for

particles of kind n.

When the step above is carried out on Eq. (12) the following expression is obtained:
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Here the external force per unit mass F;” is assumed to be
a function of x; only but not of C/. Equations (15) and
(17), along with Egs. (16), form a set of equations for par-
ticle diffusion velocities and energy flux vectors. It
should be noted that the diffusion forces d

(n=1,2,...,s) are not all independent, but satisfy the
relation
s
> d'=0. (18)
n=1

It may be worthwhile to point out that when
o"uy/LTY? <<1 (n=1,2,...,s), the granular flow is
such that the properties of a small element of solid mix-
ture do not change appreciably in a mean time between
collisions. In such a circumstance, the deviant part of the
transport pressure tensor, transport pseudothermal ener-
gy flux vectors, and diffusion velocities approach values
given by Egs. (14), (15), and (17) within a few collision
times.

Finally, the nonequilibrium distribution function for
particles of kind n of a dense mixture with distribution in
size of smooth, slightly inelastic spherical particles in
terms of the mixture granular temperature, density, mix-
ture mean mass velocity, and their derivatives with
respect to place can be found by placing the expressions
for diffusion velocities, pressure deviators, and energy
flux vectors into Eq. (13).

All the results represented thus far are for multicom-
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ponent systems. For binary mixtures these formulas may
be considerably simplified. In the subsequent section, the
special case of an isothermal dense binary mixture of
spherical particles that is undergoing a simple shear flow
will be considered as an application of this theory and the
necessary basis for predicting the separation of two
different size particles by shear is discussed. Moreover,
an analytical relation for the particle diffusivity is
presented when there are no external forces acting on the
mixture of monosized differently colored particles and
mechanical equilibrium has been attained.

IV. BINARY MIXTURES
OF FRICTIONLESS SPHERES

A simple solution of the balance of energy for a binary
mixture is obtained when the granular material is under-
going a steady, simple shear flow with a constant granu-
lar temperature. Consider a binary mixture consists of
two solid components with masses m ! and m 2, diameters
o! and o2, and number densities n! and n?, respectively,
undergoing a shearing motion at a constant and high rate
of strain & It is assumed that the particles are nearly
elastic and all with the same coefficient of restitution e for
normal collisions. In the absence of external forces and
gradient of number densities, by use of Eq. (10) the ener-
gy balance for the mixture at thermal equilibrium, where
the granular temperature of both components are equal,
can be written as
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where p"af,,, is the component of the force acting on
particles of kind #n in the direction of flow on a unit area
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of surface perpendicular to the direction of shear gra-
dient. This may be interpreted as a statement that pseu-
dothermal energy generated due to work done by the
pressure in a region of the mixture moving with the mean
mixture velocity should be locally dissipated by way of
inelastic particle-particle collisions so as to maintain a
constant granular temperature.

By placing the expressions for the pressure deviators
a%xw and a%xy> resulting from Eq. (14) into Eq. (19) the
mixture granular temperature can be expressed in terms
of the number densities, strain rate, and the particle
properties. Before the shear stress for a binary mixture of
frictionless spheres can be evaluated, an expression for
the mixture shear stress is needed. The non-dimensional
shear stress may be given by

PL=3

n=1

15

* 2,
p* o ;5 o

where p* is the particle density given by Walton and
Braun [36]. Equation (20) has been written in a form that
allows easy comparison with the results of computer
simulations by Ladd and Walton [20]. The first term on
the right-hand side can be interpreted as the nondimen-
sional kinetic flux of momentum and the second term
represents an extra contribution due to particle-particle
collisions. Now by substituting the results for the mix-
ture granular temperature as described above into Eq.
(20) the nondimensional mixture shear stress can be eval-
uated, although the expression is complicated. The non-
dimensional shear stresses — Py, are calculated using Eq.
(20) for two different volume fraction ratios ¢,/¢,=0.5
and 2 and two different coefficient of restitution e =0.8
and 0.95 with size ratios from 1 to 3.5. The total solid
volume fraction is taken to be 0.5. Since there is no ex-
act, explicit equation for g% in terms of the set of particle
diameters {0} and particle number densities {n,} avail-
able, the Carnahan-Starling expression is used, which is
accurate in the range of volume fraction used in Ladd-
Walton computer simulations and is based on the as-
sumption of an isotropic distribution of collision angles
between the colliding particles as proposed by Mansoori
et al. [25] for mixtures of hard-sphere fluids. However,
their expression gives values of the radial distribution
function that are too low at high mixture volume frac-
tions, especially as the system approaches the random
close packing density. The Carnahan-Starling approxi-
mation is given by

np ﬁ i £,0"0" it
g = >
oy 1763 [ (1—=&3)0™
21
=T < kKl = =3 =1
§1—?k§ln o, a;=1, a,=%, ay=1,

where n* is the m ¥ particle number density.
Figure 1 shows the results of the calculations for a
binary mixture of smooth spheres as plots of — P}, calcu-
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€ €

np
c
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lated using this theory and compares these results with
the computer simulations results of [20]. The agreement
is good except for the large size ratios at e =0.95 and
¢,/$,=2. The computer simulations predict too rapid a
decrease with increasing size ratio for the large size ra-
tios. This may be interpreted as a tendency to dissipate
the state of high pseudothermal energy of a mixture at
large size ratio by reducing the work done by the pres-
sure. The agreement with the results for the smaller
volume fraction ratios is good. Of considerable
significance is the observation that the predicted values of
the nondimensional shear stress from the computer simu-
lations have a strong dependence on sample size for
larger size ratio for e =0.8 and ¢,/¢,=2 [37]. The
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FIG. 1. Comparison of the present model calculations for the
nondimensional shear stress -—Px";, for binary mixtures of fric-
tionless in elastic spheres undergoing steady, simple shear flow
with the computer simulations of Ladd and Walton [20]. The
results of Ladd and Walton are plotted as nondimensional shear
stress versus size ratio. Symbols and conditions are as follows.
(1) O, large sample size; +, small sample size for e =0.8,
¢1/6,=2. (2) X, e=0.8, ¢,/$,=0.5. (3) O, e=0.95,
¢,/9,=2. (4) A, e=0.95, ¢,/¢,=0.5. Curves are the present
kinetic model predictions for constant granular temperature
conditions.
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kinetic theory predictions seem to be in agreement with
the results calculated using a larger sample size, suggest-
ing that the shear stresses in binary mixtures appeared to
be approaching a limit at very high size ratios, which is
shown in Fig. 2. However, this prediction shows
somehow disagreement with the results of computer
simulations, using large sample size, for the larger
volume fraction at very large size ratio. If the computer
simulations results are considered to be reliable, then one
needs a new approach for studying this unusual behavior.
The idea of particulate clusters seems to be a worthwhile
idea in the study of the rheology of multicomponent
dense mixtures of solid spherical particles at very large
size ratio, where every kind of cluster makes a distinctive
contribution to the mixture rheology. It is worth noting
that the present theory, which is based on the assump-
tions of no three-body effects, collision time much less
than the local averaging time, and small change in local
properties of the mixture over distance of order of the
separation between neighboring particles, is restricted to
a relatively small range of size ratio.

One of the most interesting questions pertaining to
binary mixture of solid particles is the question of possi-
ble separation of two species. The separation of particles
with different size can occur when a nonhomogeneous
binary mixture of solid particles undergoes a linear shear
flow. To visualize the nature of the processes involved
consider a collection of particles in a layer of thickness
8y, where y is the direction normal to the plane of shear.
Since the mixture is present with inhomogeneities in the
concentration, the mixture viscosity is not constant in the
direction normal to the plane of shear. As a conse-
quence, shear-induced particle migrations arise from gra-
dients in shear stress. Here the attention is focused on
finding a necessary basis to investigate separation by
shear in a nonhomogeneous binary mixture using the
present kinetic theory. By taking Eq. (9) into account,
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FIG. 2. A (—P})—(¢,/¢$,)—(0,/0,) surface for a binary
mixture of slightly inelastic spherical particles undergoing a
shearing motion at constant and high rates of strain with
coefficient of restitution e =0.8.
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the balances of momentum in the direction of shear plane
for particles of the nth component undergoing a shearing
motion between two parallel horizontal boundaries at a
constant and high rate of strain €, can be given by

9
0= + +e"P)p"n PP g mPpLP"
By p"alsy) pz_l 15 (1+e™)p"nPo™ g’PM

X(alyyy takyy) |—pév), (22)

where v’ represents the shear-induced diffusion velocity
of particles of kind n normal to the plane of shear. Here
it is assumed that the diffusion velocity due to gradients
in viscosity is controlling the particle migrations. By
placmg the expressions for the pressure deviators a( xp)
and a <xy) given above in the balance of momentum of the
first and the second component, expressions for shear-
induced diffusion velocities in terms of particle number
densities may be derived. This is a good approximation
when the granular temperature is a relatively weak func-
tion of concentration. Then, by substituting those ex-
pressions in the balance of mass of the first and the
second component and using Eq. (18) one can provide the
necessary basis to predict the separation of two kinds of
particles from one another by shear. According to Eq.
(20) for monosized suspensions a(,,) is proportional to
&20'2; hence the shear-induced diffusion velocities of parti-
cles are proportional to éo2. This is in agreement with
the shear-induced self-diffusion velocity predicted by
Leighton and Acrivos [38].

At this stage it is of interest to take up the question of
possible separation in a homogeneous mixture undergo-
ing a simple shear flow. Consider a mixture of sohd par-
ticles of two spec1es 1 and 2 with masses of m and m?,
diameter o' and 0?2, and constant densities p} and p3, re-
spectively, undergomg linear shear flow at a constant and
high rate of strain &, between two parallel planes. In this
case the mixture viscosity does not depend on y, where y
is the direction normal to the plane of shear. To under-
stand the process of particle separation one needs to
study the stability of that state of the mixture. A linear
stability analysis yields the spectrum of small fluctuations
pl(y,t), pz(y,t), and é(y,t)~exp(iBy —iwt), where w is the
frequency and B is the wave number. At moderate con-
centrations, the result suggests that fluctuations are un-
stable when the shear rate &, exceeds a threshold

2 4plpdriv?
(P + Y1) (P32 +Y2)

(23)

The functions in Eq. (23) are defined as
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where n} and n3 are number densities of particles of kind
1 and 2, respectively. Here the necessary basis for pre-
dicting the separation of two kinds of particles from one
another by shear is discussed. An investigation on the
stability of a sheared binary mixture of slightly inelastic
spherical particles is of interest because it can be applied
to the study of stress fluctuations observed in shear cells
[35].

As another example of applications of the theory, the
isothermal diffusion in a monosized binary mixture of
differently colored particles is considered. The focus of
this section is in examining the mixing that occurs during
a flow of relatively dense monosized solid particles. Con-
sider a binary mixture consists of two differently colored
solid components with the same diameter ¢ and mass m,
but different number densities n! and n? undergoing an
isothermal motion between two parallel walls with negli-
gible shearing. According to Eq. (10), in order to main-
tain a constant granular temperature, energy must be
added to the mixture at a rate y. Assuming that there
are no external forces acting on the mixture and that
mechanical equilibrium has been initiated, F =0 and
dP;, /3x,=0. Using Eq. (16) for d;" in Eq. (15), the bal-
ance of momentum for particles of kind n (n =1,2) in the
direction perpendicular to the direction of main flow may
be given as
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The chemical potential for particles of kind »n can be ob-
tained from Eq. (21) for the radial distribution function
(39]
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The first term on the right-hand side of Eq. (26)
represents the free energy of the particles of kind » when
approaching ideal-gas behavior. The remaining terms are
the residual chemical potential. As an initial speculation,
the contribution of an extra flux due to the difference be-
tween the transport pseudothermal energy flux vectors of
the first and second component is neglected. Hence, Eq.

[

(25) for particles of kind 1 and 2, with a flow without a
net mass flow in the y direction, reduce to an expression
for the particle self-diffusion coefficient given by Savage
[40] 172
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where D is the particle self-diffusion coefficient, g, is the
contact value of the equilibrium radial distribution func-
tion, and ¢ is solid volume fraction.

Hsiau and Hunt [41] compared their measurements for
a dense rapid granular flow with the estimates for the
mixing layer thickness using Eq. (27) and found that the
model predictions overestimated the experimental obser-
vations by 60-300%. It is worth noting that particle
diffusion in the direction normal to the shear plane in a
dense granular material undergoing shear flow between
rough boundaries is caused by several thermodynamic
forces. However, the theoretical study of Hsiau and
Hunt [41] seems to have considered only the ordinary
diffusion. Hence a complete description is required of the
diffusion processes involved in a sheared dense granular
material based on generalized Enskog theory of granular
fluids. Zamankhan and Polashenski [42] present a com-
plete description of the problem as well as the compar-
ison between the experimental measurements [41] and the
estimates for the mixing layer thickness based on the
present theory.

V. CONCLUDING REMARKS

The analysis presented above gives a theoretical foun-
dation for the Enskog theory for dense multicomponent
mixtures of slightly inelastic spherical particles. It is as-
sumed that the level of information provided by the
single-particle velocity distribution functions is adequate
to describe the behavior of dense multicomponent mix-
tures, where the effect of more than two-body collisions
may be neglected. The nonequilibrium functions for par-
ticles of each size are derived, using a generalized Grad
moment method. The method presented in this study
differs from Grad’s in that the diffusion velocities, the
pressure deviators, and the pseudothermal energy flux
vectors are derived by scaling arguments. In the present
theory, the diffusion forces at uniform temperature are
presented as gradients of the chemical potentials.
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The theory is applied to calculate the shear stresses for
a binary mixture of frictionless spheres with a constant
granular temperature far away from the walls using
Carnahan-Starling approximation for the contract value
of the equilibrium radial distribution function (21). The
results show good agreement with the computer simula-
tion results of Ladd and Walton [20], where the total
solid volume fraction was ¢, =0.5, except for the large
size ratios at the coefficient of restitution e =0.95. The
kinetic theory predictions suggest that the shear stresses
in binary mixtures appeared to be approaching a limit at
very high size ratio.

As another example of applications of the theory, the
special case of isothermal diffusion in a monosized binary
mixture of differently colored particles is investigated and
an analytical relation for the flow-induced particle
diffusivity is presented. Moreover, the necessary basis for
predicting the separation of two kinds of particles from
one another by shear is discussed.
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APPENDIX: CONSTITUTIVE QUANTITIES

Here the expressions for quantities Pj, ¢, g/, 9;i, and
y" and sourcelike terms x™(C;), x"(C;C,), and
X"(C;C,C,) in terms of 13-field quantities are given.
The algebraic manipulations were carried out by hand. A
symbolic manipulation program in MATHEMATICA [43]
was developed to check the calculations. The constitu-
tive quantities can be written, to first order in the gra-
dients, as follows: the pressure tensor

6’ 27
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where M"=m//(m/+m") and §,, is the Kronecker delta; the energy flux
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where the parentheses around a set of N indices including M free indices represent the sum of all permutations of the
free indices only divided by M!: it is worth noticing that the flux of the pressure tensor is symmetric only with respect
to the two first indices; the flux of the energy flux
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where D, is the rate of deformation tensor, and
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